Capítulo 5 Substituição nucleofílica

Capítulo 5 Substituição nucleofílica

A: Nucleófilo neutro e substrato neutro

$$R-X + Y: \longrightarrow R-Y + X^{-}$$

$$CH_{3}CH_{2}I + Bu_{3}P: \xrightarrow{acetone} Bu_{3}P:CH_{2}CH_{3} (\sim 100\%)$$

$$Cl \qquad \qquad OCH_{2}CH_{3}$$

$$Ph-C(CH_{3})_{2} + CH_{3}CH_{2}OH \xrightarrow{-HCl} Ph-C(CH_{2})_{3} (87\%)$$

$$OTs \qquad OH$$

$$CH_{3}CH_{2}CHCH_{3} + H_{2}O \xrightarrow{acetone} CH_{3}CH_{2}CHCH_{3} (77\%)$$

B-Substrato neutro e nucleófilo aniônico

$$RX + Y^{-} \longrightarrow R-Y + X^{-}$$

$$CH_{3}CHCH_{2}CN \xrightarrow{NaI/acetone} CH_{3}CHCH_{2}CN (96\%)$$

$$CH_{2}OTs \xrightarrow{LiBr/acetone} CH_{2}Br$$

$$CH_{3}(CH_{2})_{5}CHCH_{3} \xrightarrow{PhS^{-}/ethanol} CH_{3}(CH_{2})_{5}CHCH_{3}$$

C- Subtrato catiônico e nucleófilo neutro

e.g.
$$PhCHS(CH_3)_2 + H_2N-C-NH_2 \xrightarrow{60^{\circ}C} PhCH-S-C-NH_2$$

$$CH_3 \xrightarrow{+} Ph_2CH-N\equiv N \xrightarrow{+} Ph_2CH-OEt + TsOH + N_2$$

D- Subtrato catiônico e nucleófilo aniônico

e.g.
$$RX^{+} + Y^{-} \longrightarrow R-Y + X:$$

$$(CH_{3}CH_{2})_{3}O^{+} + (CH_{3})_{3}C-COO^{-} \longrightarrow (CH_{3})_{3}C-C-OCH_{2}CH_{3} (90\%)$$

$$CH_{2}=CHCH_{2}CH_{2}\overset{+}{SPh} \xrightarrow{NaI/DMF} CH_{2}=CHCH_{2}CH_{2}I (52\%)$$

$$O CH_{3}$$

$$O CH_{3}$$

$$O CH_{2}N^{+}(CH_{3})_{3} \xrightarrow{NaCN} O CH_{2}CN$$

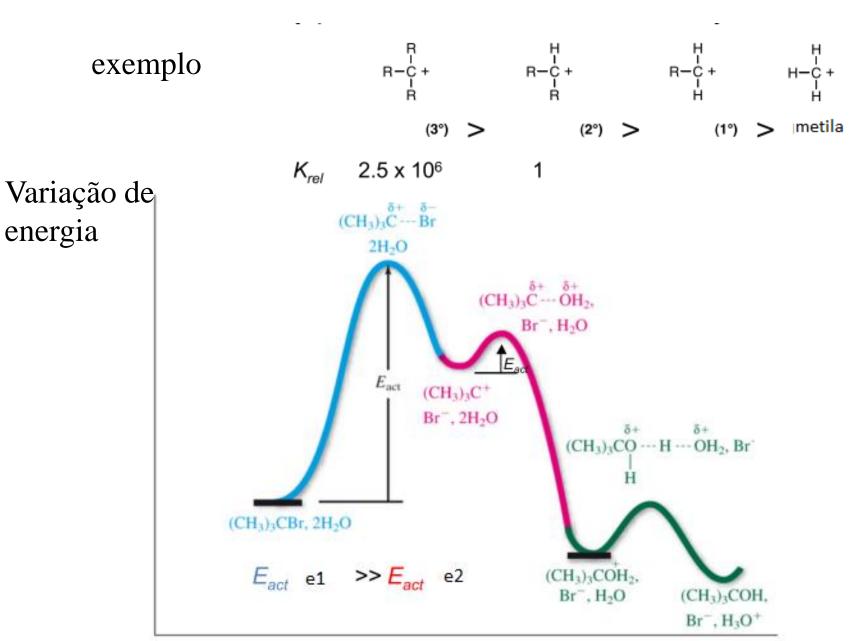
$$O CH_{2}CN$$

Caso limitrofe S_N 1

$$R-X \xrightarrow{\text{lento}} R^{+} + X^{-}$$

$$R^{+} + Y^{-} \xrightarrow{\text{k}_{2}} R-Y$$

$$\text{velocidade} = -\frac{d[RX]}{dt} = \frac{d[RY]}{dt} = k_{1}[RX]$$


$$\text{Cinética de primeira ordem}$$

$$R-X+Y^{-}$$

$$R-X+Y^{-}$$

$$\text{coordenada da reação}$$

Sabe-se que 1 sobre a estrutura- sofre de efeitos **estereo e eletrônicos** e é sensível aos grupos de saida. Grupos volumosos favorecem a ionização **Quanto ao meio** – é sensível à polaridade dos solventes, constate dielétrica dos solventes baixa a energia do ET mais do que para os os reagentes **Estereoquímica** – ocorre racemização.

Coordenada de reação

racemização

$$(3S,7S-) \ 3-bromo-3,7-dimetildecano$$

$$(3S,7S-)3,7-dimetildecan-3-ol$$

$$(3R,7S-)3,7-dimetildecan-3-ol$$

Caso limitrofe S_N 2

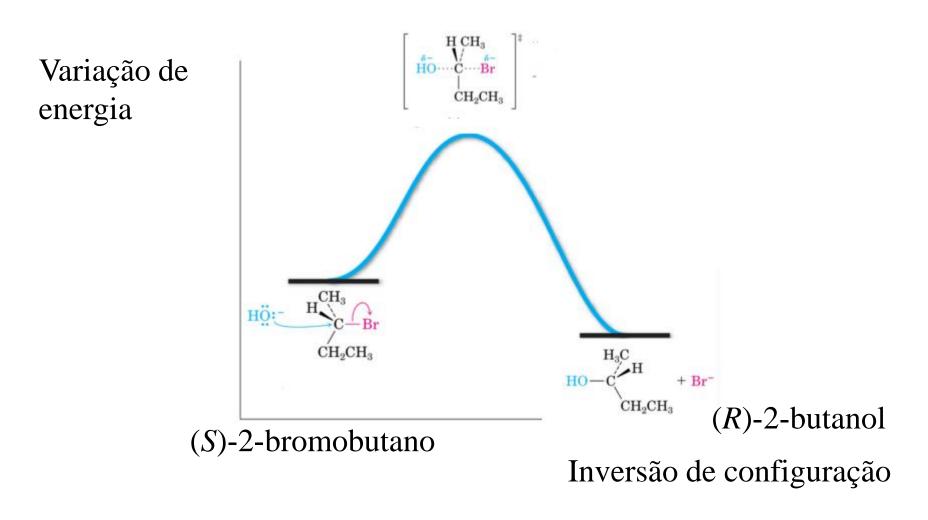
Deslocamento direto do grupo de saida pelo nucleófilo e cinética de segunda ordem

$$R-X + Y \xrightarrow{k} [Y - R - X]^{\neq} \longrightarrow R-Y + X$$

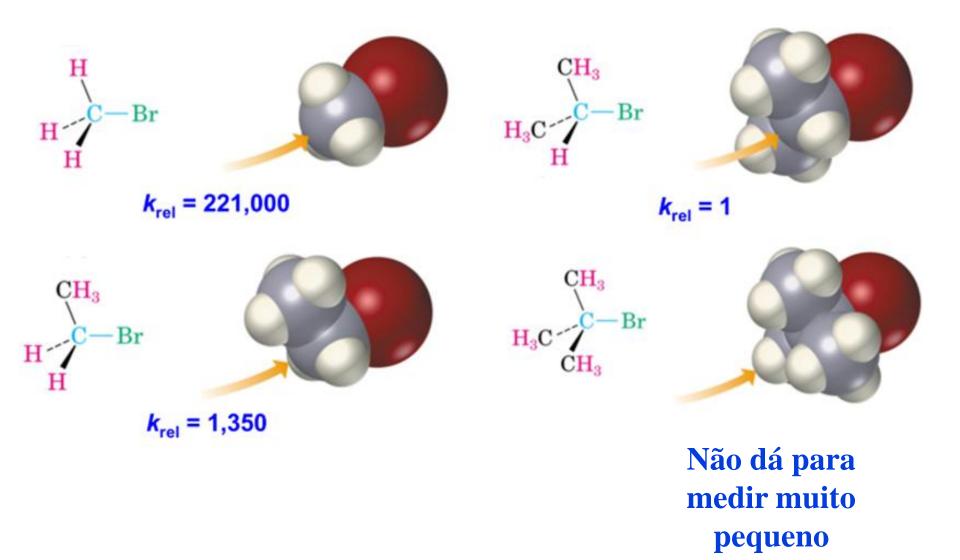
$$Rate = -\frac{d[RX]}{dt} = -\frac{d[Y^{-}]}{dt} = k[RX][Y^{-}]$$

$$Y \xrightarrow{X}$$

$$Bipiramide trigonal$$

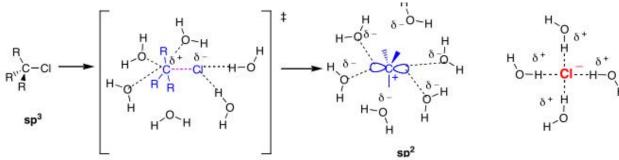

$$Y: + X:$$

$$Inversão de configuração$$

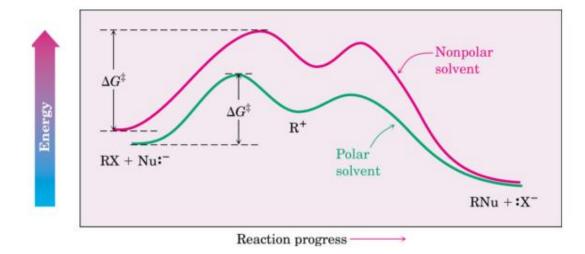

Estrutura . **Efeitos estereo eletrônicos** e menos sensível ao grupo de saida **Solventes polares** diminuem a velocidade da reação, na solvolise aparente uma cinética pseudo primeira ordem . **Estereoquímica** Inversão e racemização

exemplo

ET Bipiramide trigonal carbono pentacoordenado



. Efeitos estereo eletrônicos

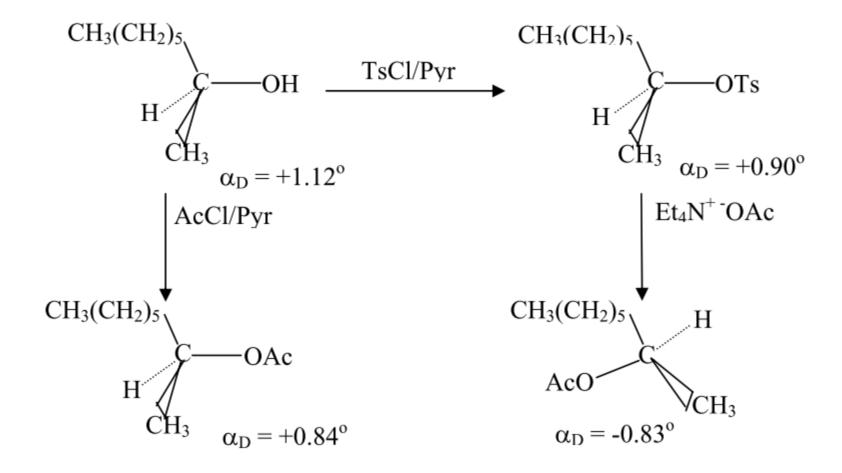


Impedimento em carbonos vizinhos

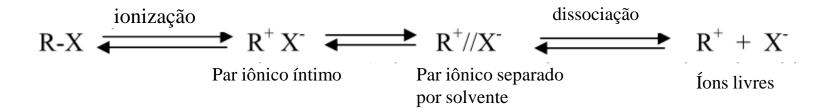
$$k_{\text{rel}} = 2 \times 10^{-5}$$
 $k_{\text{rel}} = 2 \times 10^{-5}$
 $k_{\text{rel}} = 2 \times 10^{-5}$

Solventes polares estabilizam os reagentes e não o estado de transição

Hipóteses de Mecanismos alternativos


A- mecanismos competindo ou concorrendo ou mistos

$$S_N 1 e S_N 2$$


- **B** mecanismos fundidos
- C hipótese estrutural de Doering-Zeiss
- D mecanismo unificado do par iônico Saul Winstein

Hughes e Ingold

$$\begin{array}{cccc}
Cl & OCH_3 \\
Ph-CH-CH_3 & CH_3ONa/CH_3OH & Ph-CH-CH_3 \\
V & = & k_1[PhCHClCH_3] + k_2[PhCHClCH_3][CH_3ONa] \\
1 & ordem & 2 & ordem
\end{array}$$

- A- mecanismos competindo ou concorrendo ou mistos S_N 1 e S_N 2
- B mecanismos fundidos
- C hipótese estrutural de Doering-Zeiss
- D mecanismo unificado do par iônico Saul Winstein

O ataque do nucleófilo ou solvente (solvólise pode ocorrer em qualquer estágio dando como resultado um contínuo de mecnismos de reações

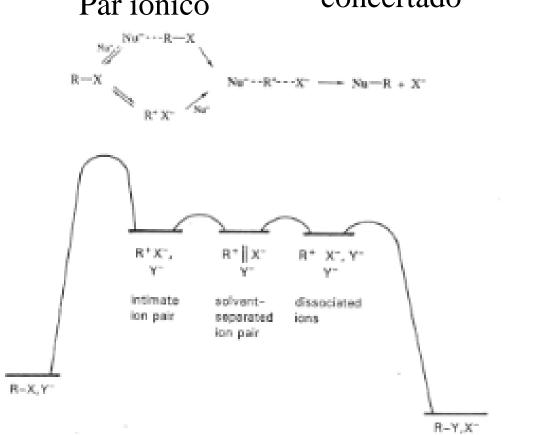
Ktroca/krac = 2,3 do p-nitrobenzoato de p-clorobenzidrila com O¹⁸ marcado na carbonila a 100 C explicar

$$O = S = O$$

$$O = Ar$$

$$O = S = O$$

$$O = Ar$$


$$O = S = O$$

$$O = Ar$$

$$O = S = O$$

Par iônico

concertado

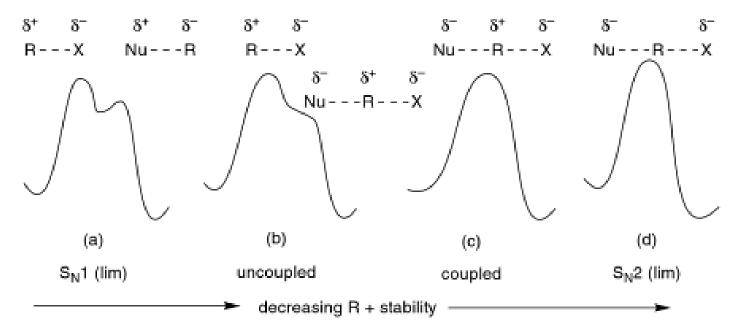


Fig. 4.6. Reaction energy profiles showing decreasing carbocation stability in change from $S_N 1(\lim)$ to $S_N 2(\lim)$ mechanisms.

Estabilidade decrescente do carbocation

Calor de ionização

de cloretos e álcoois em SO₂ClF estabilidade dos carbocátions

Reactant	ΔH (kcal/mol)		
	X = C1	X = OH	
(CH ₃) ₂ CH-X	-15		
(Ph) ₂ C—X	-16		
CH ₃			
(CH ₃) ₃ C-X	-25	-35	
(CH ₃) ₂ CX Ph	-30	-40	
(Ph) ₂ C—X CH ₃		-37.5	
(Ph) ₃ C-X		-49	
$(\bigcirc -)_3 C - X$		-59	
			

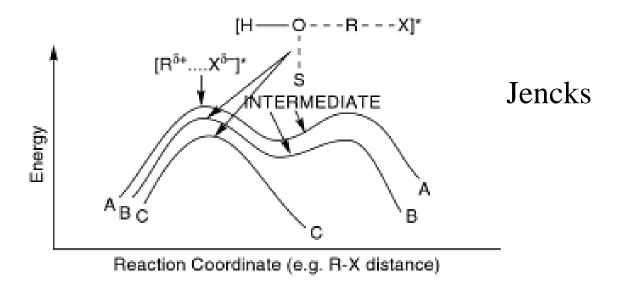


Fig. 4.5. Reaction energy profiles for substitution mechanisms. A is the S_N1 mechanism. B is the S_N2 mechanism with an intermediate ion pair or pentacoordinate species. C is the classical S_N2 mechanism. Reproduced from T. W. Bentley and P. v. R. Schleyer, *Adv. Phys. Org. Chem.*, **14**, 1 (1977), by permission of Academic Press.

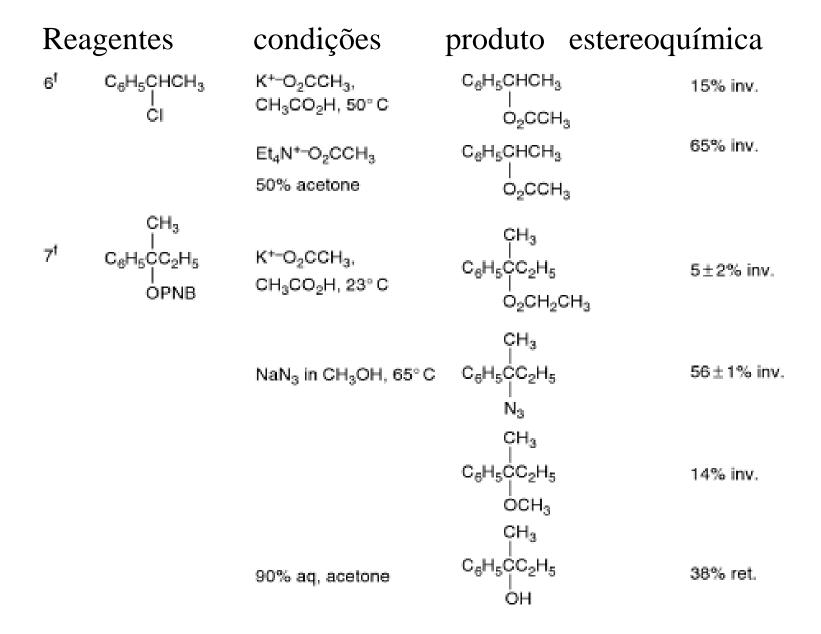
$$CH_3CH = F^+$$
 $CH_3CH = F^+$ $CH_3CH = CI^+$

Grupos retiradores de eletrons sobre o sítio catiônico desestabilizam porém temos que considerar o doação de eletrons por ressonância

$$\begin{array}{c|c} \downarrow \\ C - C = N: \end{array} \begin{array}{c} C = C = N^{\frac{1}{2}} \end{array} \begin{array}{c} \downarrow \\ C - C = Q: \end{array} \begin{array}{c} \longleftarrow \\ H \end{array} \begin{array}{c} C = C - Q: \end{array}$$

z	Solvolysis rate relative to $Z = H$	Destabilization (kcal/mol) energy relative to $Z = H$
CN	$\sim 10^{-3 \ a}$	9.9 ^b
CF ₃	$\sim 10^{-3}$ c	37.3 ^b
CH=O	-	6.1^{b}

Estabilidade do cátion adjacente a um grupo ciclopropil


A é Preferida hiperconjugação C-C Cálculos indicam aumento da ligação C3-C4 1,58 A e fechamento do ângulo de ligação 2,3,4 consistentes com C-C hiperconjugação

Relação entre a nucleofilicidade e efeito de solventes

Re	eagentes	condições	produto este	reoquímica
1 ^b	CH ₃ CH ₂ CH ₂ CHDOBs	HCO ₂ H 99° C	CH₃CH₂CH₂CHDO₂CH	$99 \pm 6\%$ inv. Brometo de bromo metanossulfonila
2°	C ₆ H ₅ CHDOTs	CH ₃ CO ₂ H 25° C	C ₆ H ₅ CHDO ₂ CCH ₃	82 ± 1% inv.
3°	CH ₃ CH(CH ₂) ₅ CH ₃ OTs	Et ₄ N ⁺⁻ O ₂ CCH ₃ acetone, 56°C	CH ₃ CH(CH ₂) ₅ CH ₃ O ₂ CCH ₃	100% inv.
4 ^d	CH ₃ CH(CH ₂) ₅ CH ₃ OTs	75 % aq. dioxane 65° C	CH ₃ CH(CH ₂)₅CH ₃ OH	77% inv.
	013	75 % aq. dioxane 0.06 <i>M</i> NaN ₃ , 65° C	CH ₃ CH(CH ₂) ₅ CH ₃ OH 22%	100% inv.
			CH ₃ CH(CH ₂) ₅ CH ₃ N ₃ 78%	100% inv.

inversão

$$\begin{array}{c} \text{CH}_{3} \\ \text{R-C-OTs} \longrightarrow \text{R-C+} \\ \text{H} \end{array} \xrightarrow{\text{OTs}} \begin{array}{c} \begin{array}{c} \text{N}_{3} - \text{or} \\ \text{H}_{2}\text{O} \end{array} \xrightarrow{\text{R-C-N}_{3}} \text{or} \end{array} \xrightarrow{\text{R-C-OH}} \begin{array}{c} \text{CH}_{3} \\ \text{R-C-OH} \\ \text{H} \end{array} \xrightarrow{\text{H}_{2}\text{O}} \begin{array}{c} \text{CH}_{3} \\ \text{H} \end{array} \xrightarrow{\text{R-C-OH}} \begin{array}{c} \text{CH}_{3} \\ \text{H} \end{array} \xrightarrow{\text{R-C-OH}} \begin{array}{c} \text{CH}_{3} \\ \text{H} \end{array} \xrightarrow{\text{R-C-OH}} \xrightarrow{\text{R-C-OH}} \begin{array}{c} \text{CH}_{3} \\ \text{H} \end{array} \xrightarrow{\text{R-C-OH}} \xrightarrow{\text{R-C-OH}} \begin{array}{c} \text{CH}_{3} \\ \text{H} \end{array} \xrightarrow{\text{R-C-OH}} \xrightarrow{\text{R$$

Nucleofilicidade e efeito de solvente

Table 4.3. Nucleophilicity Constants for Various Nucleophiles^a

Nucleophile	$n_{\mathrm{CH_3I}}$	Conjugate acid pK_a	
CH3OH	0.0	-1.7	
NO _t	1.5	-1.3	
F-	2.7	3.45	
$CH_3CO_2^-$	4.3	4.8	
Cl-	4.4	-5.7	Sem Solvatação
$(CH_3)_2S$	5.3		
NH ₃	5.5	9.25	a nucleofilicidade dos
N_3^-	5.8	4.74	ânions se altera
$C_6H_5O^-$	5.8	9.89	Nu duros aumentam mais
Br-	5.8	-7.7	que Moles
CH ₃ O ⁻	6.3	15.7	Ex em metanol
HO^{-}	6.5	15.7	azida>iodeto>cianeto>
NH_2OH	6.6	5.8	brometo> cloreto
NH_2NH_2	6.6	7.9	
$(CH_3CH_2)_3N$	6.7	10.7	Em DMSO
CN-	6.7	9.3	Cianeto>azida>cloreto>
(CH ₃ CH ₂) ₃ As	7.1		brometo>iodeto
I	7.4	-10.7	
HO_2^-	7.8		
$(CH_3CH_2)_3P$	8.7	8.7	
$C_6H_5S^-$	9.9	6.5	
$C_6H_5Se^-$	10.7		
$(C_6H_5)_3Sn^-$	11.5		

a. Data from R. G. Pearson and J. Songstad, J. Am. Chem. Soc., 89, 1827 (1967);

Reações mais rápidas ocorrerão entre espécies de dureza e moleza compatíveis

Efeito do grupo de saida Ions não clássicos